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Abstract
Learning complex manipulation skills with robotic arms is a challenging prob-
lem in Reinforcement Learning. Training policies from scratch is often time-
consuming and normally infeasible when using real robots. Existing tech-
niques solve this issue by leveraging human priors in the form of shaped re-
wards or demonstrations, but most ignore the potential of using other robots
as demonstrators. In this work, we attempt to transfer complex manipulation
skills between robots with different morphologies, so that knowledge that has
already been acquired can be leveraged to achieve new tasks. We use a recently
proposed method to learn a shared feature space between states of the different
robots, and then exploit this representation to transfer skills. For this purpose,
we introduce a new technique we call Translated Behavior Cloning, which
combines Transfer Learning methods with model-free RL. The results show
that transferring manipulation skills between a single arm manipulator and a
dual-arm robot, despite the large differences between them, is indeed possible,
although further research is needed to make the training process more data ef-
ficient for real systems.
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Sammanfattning
Att lära komplexa manipuleringsfärdigheter för robotarmar är ett utmanande
problem inom Reinforcement Learning. Att träna en policy från grunden på en
riktig robot är ofta tidskrävande och vanligtvis orimligt. Existerande tekniker
löser detta genommänskliga förkunskaper som utformade belöningar eller de-
monstrationer, men de flesta ignorerar potentialen i att använda andra robotar
som demonstratörer. I detta arbete försöker vi överföra komplexa fingerfär-
dighetsförmågor mellan robotar med olika morfologier, så att kunskapen som
redan har förskaffats kan användas för att uppnå nya uppgifter. Vi använder
en nyligen föreslagen metod för att lära en delad attributrymd (feature space)
mellan tillstånd av de olika robotarna, och utnyttjar denna representation för
att överföra förmågor. För detta syfte introducerar vi en ny teknik som vi kal-
lar Translated Behavior Cloning, som kombinerar lärandeöverföring (transfer
learning) med model-free Reinforcement Learning. Resultaten visar att över-
föring avmanipuleringsförmågormellan en enarmad och tvåarmad robot, trots
stora skillnader mellan dem, är möjlig även om ytterligare forskning behövs
för att göra träningsprocessen mer data-effektiv för verkliga system.
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Chapter 1

Introduction

Robotics is perhaps one of the most powerful realizations of automation, al-
though robots capable of accomplishing tasks within our households are still
few. This is because it is very difficult to hand-engineer software capable of
dealing with unpredictability. The answer to this problem is almost definitely
Machine Learning, but applying it to Robotics comes with additional chal-
lenges. For example, the input to our learned controller is often composed by
partial and noisy information, while the output is a complex time-dependent
set of signals. In addition, allowing the robot to learn by trial and error may not
only be very inefficient, but also potentially dangerous for the environment and
for the machine itself. Due to such limitations, training robots to perform tasks
in unpredictable environments is currently expensive and time-consuming.

A different approach is instead to train the robot from demonstrations. As
humans, we are used to the idea of learning new physical tasks by observing
others while they perform them, and even some animals appear to do the same.
Recent work explores the possibility of using human demonstrations to train
manipulators, but such techniques require time-consuming data collection. An
alternative approach could be for the robot to learn from another machine.

1



2 CHAPTER 1. INTRODUCTION

1.1 Research Questions
This thesis aims to address the following research questions:

• Is it possible to transfer complex object manipulation skills between
simulated robots with different morphologies? What Transfer Learning
methods could be applied to this problem?

• We focus on a technique that combines Transfer Learning with Rein-
forcement Learning to perform skill transfer. We address the question of
how its sample efficiency compares to methods that learn from scratch.

1.2 Overview
We approach our research questions by first analyzing existing techniques,
highlighting their strengths and weaknesses, and by then presenting our own
solution for this particular problem. We introduce a new set of simulated envi-
ronments powered by the MuJoCo physics engine, and developed specifically
for skill transfer. We then propose a novel technique we call Translated Be-
havior Cloning, which aims to train a robotic agent by observing successful
demonstrations performed by another robot, leveraging an existing method
based on autoencoders to translate between the two.

We proceed by experimenting with robotic agents learning object manipula-
tion skills from scratch, using state-of-the-art Reinforcement Learning meth-
ods for continuous control, such as DDPG and PPO. This first set of experi-
ments serves to validate our implementations of the relevant RL algorithms,
as well as to motivate the need for more efficient methods.

In a second set of experiments, we validate our novel technique on several
simulated environments, and successfully transfer object manipulation skills
between robots with different morphologies. In particular, we are able to ex-
ploit an already solved task – Pick and Place – to transfer the skills needed
to achieve the Push task from a single-arm manipulator to a dual-arm robot.
We report results on the effectiveness of the presented method, as well as data
on its sample efficiency when compared to learning from scratch. Finally, we
discuss the results and comment on the importance of temporal alignment be-
tween two robots solving a task when collecting training data.
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To our knowledge, the proposed method is the first that aims to transfer com-
plex skills between high DoFmanipulators with non-trivial differences in mor-
phology, actuation, and dynamics. Our hope is that these experiments, to-
gether with the developed simulated environments will provide a starting base
for further research regarding this challenging problem.

1.3 Contributions
Themain contributions of this work can be summarized in the following points:

• We introduce a new set of simulated environments designed to test and
develop methods for transferring skills between robotic manipulators.
The environments use the standard interface of OpenAI’s Gym package,
they are open-source and available on GitHub1.

• We propose a novel technique we call Translated Behavior Cloning that
aims to train a robotic agent by observing successful demonstrations
performed by another robot, leveraging an existing method to translate
between the two.

• We validate our methods with experiments on the simulated environ-
ments, while presenting an analysis on the importance of trajectory align-
ment during training.

1.4 Ethics, Societal Aspects
and Sustainability

When working with highly transformative technologies in the areas of Arti-
ficial Intelligence and Robotics, it is very important to consider the potential
impact of one’s research project to others and to the environment. In the con-
text of this thesis, one of the issues connected to robotic agents is their im-
pact on the job market. This is something that we have been witnessing for
decades now, but the more recent advances in the world of autonomous sys-
tems are bound to affect exponentially more individuals in the close future.
Methods like the ones presented here may play a role in this process. When
talking about AI, one of the ethical aspects that is often mentioned and that

1http://github.com/carlo-/gym

http://github.com/carlo-/gym
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should be taken into account is represented by Autonomous Weapons Sys-
tems. This work doesn’t directly contribute to the development of such sys-
tems, but it’s important to remember that many of the technologies used for
military purposes are based on academic research. Finally, we consider pos-
sible sustainability aspects. Many are not aware or ignore that training large
Machine Learning models may potentially use copious amounts of energy2.
In our particular case, this aspect is less of an issue, as computers used during
the project are mostly powered by electricity from renewable energy sources.

2https://www.technologyreview.com/s/613630/training-a-
single-ai-model-can-emit-as-much-carbon-as-five-cars-in-
their-lifetimes/

https://www.technologyreview.com/s/613630/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.technologyreview.com/s/613630/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.technologyreview.com/s/613630/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/


Chapter 2

Background

This chapter serves as an introduction to the theory behind some of the key
concepts on which this thesis is built. In particular, we report the fundamen-
tals of Reinforcement Learning, the basics of Artificial Neural Networks, and
some more specific topics such as Autoencoders. For a more rigorous set of
definitions, theory, and proofs, the reader should refer to the excellent literature
from Sutton and Barto [1] for Reinforcement Learning, and from Goodfellow,
Bengio, and Courville [2] for Deep Learning concepts.

2.1 Reinforcement Learning
Unless otherwise stated, formal definitions throughout this section are taken
from Sutton and Barto [1].

The basic components of every Reinforcement Learning setting are 1) an agent
taking actions, 2) an environment with which the agent can interact, and 3) a
feedback signal (known as reward) from the latter to the former that indicates
whether the action taken was good or not. These pieces are equivalent to the
controller, plant, and sensor measurements of the typical setting in Control
Theory. Reinforcement Learning methods can be quite powerful, because the
agent doesn’t need to have any prior knowledge about the world it lives in, and
can instead learn to solve its task by trial and error, i.e. simply by exploring
the possible actions and assimilating the feedback it receives.

5
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2.1.1 Markov Decision Processes
When working with Reinforcement Learning, it is often convenient to formu-
late the specific problem we are trying to solve as aMarkov Decision Process
(MDP), as its assumptions and formal structure allow us to apply several meth-
ods with strong theoretical guarantees.

Agent

Environment

action Atreward Rtstate St

Figure 2.1: Illustration of an MDP.

Let us indicate St as the state of the environment at time t, At as the action
taken by the agent after observingSt, andRt as the reward received after taking
At, leading to a new state St+1. At each step, the agent observes the state, takes
one action, and receives some reward, resulting in a sequence1 of tuples of the
form (St, At, Rt). By definition, the environment must satisfy the Markov
property, meaning that each state must depend only on the previous state and
action, and not on the entire history. In addition, in case of a finite MDP, the
set S of possible states and the set A of possible actions are finite. Formally,
the dynamics of the system can be defined as:

p(s′, r|s, a) .= Pr {St = s′, Rt = r|St−1 = s, At−1 = a} (2.1)

where s′, s ∈ S, a ∈ A. Note how the probability of observing a particular
state and reward only depends on the single preceding state and action pair.
In the notation above, time is discrete and can be defined arbitrarily depend-
ing on the problem we are trying to solve. We define MDPs that have a fixed
number T of steps (interactions with the environment) as finite horizonMDPs.

1Such a sequence is often also called trajectory or episode. The latter term is particularly
used when each sequence is fully independent from the others.
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Similarly, we define MDPs where T →∞ as infinite horizon MDPs.

The objective of the agent is not as simple asmaximizing the immediate reward
at each step, but rather to reach long-term goals that will ultimately yield the
highest rewards. In other words, we wish to maximize the expected return:

Gt
.
=

T∑
k=t+1

Rk (2.2)

In the case of infinite horizon MDPs (T →∞), the sum in (2.2) may diverge,
therefore we instead define the expected discounted return as:

Gt
.
=
∞∑
k=0

γkRt+k+1 (2.3)

where γ ∈ [0, 1] is referred to as discount factor. The role of γ is indeed to
guarantee that Gt is always a finite quantity, but also to regulate of "far" we
want our agent to look into the future.

Given the above definitions, we can now introduce the concept of policy π(a|s)
as the probability of choosing action awhen at state s, and of state-value func-
tion2 under the policy π as:

vπ(s)
.
= Eπ [Gt|St = s] = Eπ

[
∞∑
k=0

γkRt+k+1|St = s

]
, ∀s ∈ S (2.4)

which outputs the expected discounted return when starting from s and fol-
lowing the policy π. It is also useful to define the action-value function3 under
the policy π as:

qπ(s, a)
.
= Eπ [Gt|St = s, At = a] (2.5)

which represents the value of being at state s and taking action a. Since our
goal is to maximize Gt, it is easy to realize that both vπ(s) and qπ(s, a) are
very good tools to optimize for the return.

Although we omit the proof, it can be shown that for any MDP, there exists a
policy that is better than all other policies. We call such a policy the optimal

2The state-value function is sometimes simply called value function.
3The action-value function is sometimes simply called Q function.
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policy4 and denote it as π∗. We can also define its corresponding state/action-
value functions as:

v∗(s)
.
=max

π
vπ(s) ∀s ∈ S (2.6)

q∗(s, a)
.
=max

π
qπ(s, a) ∀s ∈ S,∀a ∈ A (2.7)

If we know the action-value function under an arbitrary policy π, we can easily
obtain a better policy as:

π′(s)
.
= argmax

a
qπ(s, a)

= argmax
a

∑
s′,r

p(s′, r|s, a) [r + γvπ(s
′)] (2.8)

with π′ guaranteed to be better than π, unless already optimal (proof in [1]).
Eq (2.8) is sometimes referred to as Policy Improvement.

2.1.2 Policy and Value Iteration
As we have seen in the previous sections, the quantities in (2.4) and (2.5) could
be very useful to maximize Gt and therefore find an optimal policy, although
neither of them is normally available. One way to obtain these functions is
through Dynamic Programming (DP) methods, which can be used to find ex-
act solutions analytically in polynomial time (in |S| and |A|).

If an exact solution is not needed, estimates can be obtained with iterative al-
gorithms such as Iterative Policy Evaluation, useful to estimate the function
V (s) ≈ vπ(s) down to a fixed error threshold. In fact, Policy Evaluation can
be easily combined with (2.8), into what is called Policy Iteration, allowing us
to estimate π ≈ π∗.

Alternatively, we could use Value Iteration, a variant of Policy Evaluation that
involves fewer operations, and therefore tends to converge faster. In this case,
the key idea is to run the Policy Evaluation step only for a single "pass" through
S, without waiting for the estimate error to reach a certain value. Because of
this, we can rewrite the algorithm with a single update rule.

4Note that although we refer to the optimal policy as a singular function, there may exist
several optimal policies with the same state/action-value functions.
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An important aspect of the methods presented in this section is that we never
directly estimate the action-value function, but rather rely on our knowledge
about the model (for example, note how we exploit p(s′, r|s, a) in (2.8)). This
may not be an issue for a simple problem, but for a lot of real-world scenarios,
this assumption cannot be fulfilled.

2.1.3 Monte Carlo Methods
If the dynamics of our environment are not known a priori, we can try to esti-
mate the state-value function from observations; one way to achieve this is to
useMonte Carlomethods. The main idea consists in simply collecting experi-
ence by interacting with the environment while averaging the returns observed
at each step.

Algorithm 1: First-visit Monte Carlo
Input : A policy π

1 V (·) arbitrary
2 Returns(·)← empty list
3 while not converged do
4 Generate trajectory of length T with π
5 G← 0

6 for t = T − 1, T − 2, ..., 0 do
7 G← γG+Rt+1

8 if St not yet seen in current trajectory then
9 Append G to Returns(St)

10 V (St)← average(Returns(St))

As we collect more experience, the estimate eventually converges to the true
state-value function. A particular version of this approach, First-visit Monte
Carlo, is shown above (as in [1]).

2.1.4 Temporal-Difference Learning
Similarly toMonte Carlomethods, Temporal-Difference Learning (TD) allows
us to estimate the state-value function directly from experience. Unlike MC
though, algorithms based on TD learning update V at each step rather than
waiting for the end of each trajectory, while still being able to converge to the
true vπ (although this is only guaranteed if certain conditions on the update
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step-size are met; refer to [1] for a detailed discussion on this matter). Because
the estimate is updated more frequently, TD methods tend to converge faster
than Monte Carlo methods.

Algorithm 2: TD(0) for estimating vπ
Input : A policy π
Parameter : The step-size α ∈ (0, 1]

1 V (·) arbitrary
2 for each episode do
3 S ← S0

4 for each step of the episode do
5 A← argmaxa π(S)

6 R, S ′ ← Environment(A)
7 V (S)← V (S) + α [R + γV (S ′)− V (S)]

8 S ← S ′

Temporal-Difference Learning is at the core of many fundamental algorithms
in RL, such as SARSA [3] and Q-learning [4].

2.1.5 Exploration versus Exploitation
One of the core problems in the area of Reinforcement Learning is the balance
between the amount of Exploration that the agent performs and the amount
of Exploitation of what has been learned. Intuitively, in order to discover new
parts or characteristics of the environment, the agent has to try new actions and
observe new states. At the same time, such new states may actually correspond
to undesirable or dangerous situations (with low or negative reward), therefore,
in some cases, it may be convenient to use the already acquired knowledge and
perform only the actions that are known to be good. If the agent is learning in
a simulated environment, we may encourage it to explore as much as possible
to quickly obtain an accurate model of the dynamics; on the other hand, if
the agent is a real robot, we usually want to limit exploration to prioritize
the safety of the machine and its surroundings. Most RL algorithms include
parameters that can be tuned to regulate this balance. For examples of more
advanced methods for safe exploration, García and Fernández [5] provide a
detailed survey on this topic.
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2.2 Artificial Neural Networks

2.2.1 Basic concepts and software packages
Artificial Neural Networks are widely used to learn approximations of arbitrar-
ily complex functions by simply observing data. They are built connecting a
number of elementary units called perceptrons, each of which takes one input,
multiplies it with a scalar value (usually called weight), and returns the result
of this operation as output. Whenever a single unit receives more than one in-
put, we multiply each value with a different weight, and output the sum as the
result. We can visually assemble these units in parallel (vertically, forming a
layer) and in series (horizontally, where the output from one unit becomes the
input to the next one); whenwe havemultiple layers, we talk aboutMulti-Layer
Perceptron (MLP) networks. In general, we can think of a Neural Network as
a graph, where each edge between two nodes is associated with a weight.

Inputs Outputs

Hidden Layers

Figure 2.2: Illustration of a fully connected feed-forward neural network.

If all units are connected with all others in the neighbouring layers, we say that
the network is fully connected. Layers between the input and output units are
often called hidden; if the neural network has at least one hidden layer, we say
the network is a deep neural network. Mathematically, we can think of each
layer of a neural network as a function f(x) that takes a vector as input and
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returns a vector as output:

f(x) = Wx + b (2.9)

where b controls the bias and W is a matrix containing all weights between
the layer and the previous one, allowing us to approximate any linear function.
In order to approximate non-linearities, we can wrap f with a non-linear func-
tion g, often called activation function.

Training is usually performed with Backpropagation, a method that consists
in keeping track of gradients each time we feed data to the network, and then
moving back, propagating the errors while adjusting the weights. There are
many software packages that allow users to build and train Neural Networks
with relative ease, all of which perform automatic differentiation, have con-
venient Python bindings, and can leverage graphics cards to efficiently paral-
lelize matrix operations. The most widely used packages are TensorFlow [6]
and PyTorch [7], the latter being the preferred library for this work.

2.2.2 Autoencoders
Autoencoders are a particular type of neural networks that are very useful when
we wish to learn a compact representation of our dataset. The structure of
such networks can be divided into two parts: the encoder – which has the
role of compressing the information down to a small number of dimensions
– and the decoder – which instead takes the compressed representation and
tries to reconstruct the original input as well as possible. The compressed
representation is often called latent representation, and the set of its possible
values spans a latent space.
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Z

Latent 
representation

Encoder Decoder

Figure 2.3: Basic structure of an autoencoder

The two parts are often symmetric, with the number of hidden units first de-
creasing in the encoder and then increasing back in the decoder. This structure
makes the central part of the network a bottleneck for the information going
through, encouraging the compression. The network is trained end-to-end, and
the reconstructed output resulting from the decoder is then compared with the
original input, meaning that autoencoders can be trained in an unsupervised
manner. The reconstruction loss also encourages the network to learn a latent
representation that automatically includes only the most important informa-
tion about the input [2].

Recent work built on top of vanilla autoencoders has enabled very powerful
applications. For instance, Variational Autoencoders (VAE) [8] make strong
assumptions on the probabilistic properties of the latent space, and have been
successfully employed to compress data such as images and text, and to gen-
erate new synthetic samples ([9] [10]).

2.3 RL with Neural Networks
The power of most modern Reinforcement Learning methods comes from the
idea of using Deep Neural Networks as function approximators to represent
the policy and the Q-function of the learner. Such methods have enabled re-
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searchers to solve challenging tasks that were previously considered out of
the realm of what computers can do; because of this, several open-source li-
braries that implement various Deep RL algorithms have been developed, such
as OpenAI’s Baselines [11], and Berkeley’s RLLib [12]. In this section, we
report the details of the RL algorithms used in our experiments, following the
notation from [13].

2.3.1 Proximal Policy Optimization (PPO)
First introduced by Schulman et al. [14], Proximal Policy Optimization (PPO)
is an on-policy RL algorithm capable of dealing with both continuous and dis-
crete action spaces. Several variants exist; we describe the simpler PPO-clip.
The algorithm alternates between collecting new observations and improving
the policy, while approximating the value function as well. The objective func-
tion used to update a PPO policy is the following:

L(s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), g(ε, Aπθk (s, a))

)
(2.10)

where θk are the parameters of the old policy, g is defined as:

g(ε, A) =

{
(1 + ε)A A ≥ 0

(1− ε)A A < 0
(2.11)

and A is the advantage function5. The idea behind PPO-clip is that the min

operator limits the impact of each update, so that the policy improves in a
stable manner.

2.3.2 Deep Deterministic Policy Gradient (DDPG)
Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al. [15]) is an off-
policy Reinforcement Learning algorithm for continuous control. It builds on
Q-learning using Deep Neural Networks as function approximators, avoiding
the limitations of tabular methods. The algorithm uses two separate networks
for predicting the best action given a state (the actor, µ), and for estimating
the Q-function (the critic, Q); both networks are trained with SGD, and are
updated periodically with target networks that lag behind. Since DDPG is an

5Given a policy π, its advantage function is defined as Aπ(s, a) = Qπ(s, a)− V π(s)
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off-policy method, it also requires a replay buffer that stores the agent’s expe-
rience and that can be sampled.

The basic idea of the algorithm is the following: we begin by collecting some
trajectories using a random policy, and we store this experience into the replay
buffer D; once we have enough data, we sample a batch of transitions B =

{(s, a, r, s′)} ⊂ D and compute the Q-function target:

y(r, s′) = r + γQφtarg(s
′, µθtarg(s

′)) (2.12)

We then update the Q-function network with:

∇φ
1

|B|
∑

(s,a,r,s′)∈B

(Qφ(s, a)− y(r, s′))2 (2.13)

and the deterministic policy with:

∇θ
1

|B|
∑
s∈B

Qφ(s, µθ(s)) (2.14)

The target networks are instead updatedwith PolyakAveraging [16] to stabilize
the training:

φtarg ← ρφtarg + (1 + ρ)φ

θtarg ← ρθtarg + (1 + ρ)θ (2.15)

where ρ is a hyperparameter between 0 and 1.

2.3.3 Hindsight Experience Replay (HER)
First introduced by Andrychowicz et al. [17], Hindsight Experience Replay is
a method that allows RL agents to learn from mistakes as well as from suc-
cessful episodes. It can be used with any off-policy algorithm such as DDPG
[15], DQN [18], and SAC [19], and its implementation is rather simple. The
basic idea is to store trajectories in the replay buffer and "pretend" that the
achieved goal at each episode was actually the desired one. Having access
to the reward function of the environment, when a trajectory is sampled for
training we recompute the rewards with a modified goal, effectively learning
from successful episodes that were never actually experienced by the agent.
This simple idea has been shown to work well even when exploration is very
difficult and the rewards are sparse [20] [21] [22].



Chapter 3

Related Work

Although our specific research questions have never been addressed before,
it is possible to divide them into several sub-problems, some of which have
already clear answers, while others are still very much a matter of study. In
this chapter, we will review existing work relevant to the problem subject of
this thesis, highlighting strengths and weaknesses of some of the methods,
while connecting it to our specific research questions.

3.1 Learning Robotic Manipulation
Until not long ago, the problem of learning complex robotic manipulation
tasks with Reinforcement Learning was considered intractable. In the past
two decades, developments in terms of hardware, algorithms, and human ef-
fort have resulted in some success. For instance, Levine, Wagener, and Abbeel
[23] use Guided Policy Search to learn complex tasks such as screwing caps
on bottles without the use of any models. Gu et al. [24] instead learn deep Q-
functions by parallelizing the policy updates across a pool of multiple robots,
efficiently solving tasks such as door opening. Popov et al. [25] have managed
to solve the pick and place task using DDPG [15], but their solution involves
a complex shaped reward function and the gripper used is limited to 3 DoF.
Rajeswaran et al. [26] instead train a 24 DoF hand with a moving forearm to
accomplish a series of complex manipulation tasks, including pick and place,
tool use, and in-hand manipulation; this is done with a proposed algorithm
called Demonstration Augmented Policy Gradient that consists in first train-
ing from human demonstrations with Behavior Cloning, and then fine-tuning
with a novel augmented loss (also based on demonstrations). Another impres-
sive step forward was made by OpenAI et al. [27], who managed to train a

16
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control policy for a simulated Shadow Dexterous Hand (also 24 DoF) to per-
form precise in-hand manipulation of objects without any demonstrations; in
this case, the obtained policy was robust enough to transfer to a physical robot
successfully. Another very interesting research direction is learning with vi-
sion systems, for instance, Levine et al. [28] use a convolutional neural network
to predict the quality of a possible grasp, and then exploit this system together
with a hand-engineered controller to solve the pick and place task on single
arm manipulators.

3.2 Transfer Learning in Robotics
Humans are able to learn new tasks quickly by taking advantage of previous
knowledge, therefore it is reasonable to desire the same behavior when train-
ing intelligent systems. Because of this, Transfer Learning (TL) is a well-
researched area of Machine Learning with the goal of exploiting knowledge
acquired in the past to solve a new task. When it comes to TL applied to
Deep Learning, an important development in this direction is represented by
the Model-Agnostic Meta-Learning paradigm (MAML) from Finn, Abbeel,
and Levine [29]; the method is able to pre-train a neural network model on
multiple tasks simultaneously, so that a high-quality, specialized model can be
obtained after few fine-tuning iterations on a specific task. MAML has been
successfully used to solve RL problems, but can only be applied if the type
information that the agent can observe is fixed across the different tasks.

When applying RL to robotics, it is common (and usually necessary) to en-
code information about the robot state as observations (for example, the agent
should be informed about its position and the current configuration of its joints,
either from a vision system or from other kinds of sensors), therefore, dif-
ferent robots with different morphologies will necessarily observe a different
world, making MAML not applicable for this problem. Devin et al. [30] try to
overcome this issue by splitting RL policies into "task-specific" and "robot-
specific" neural networks that ideally can be recombined to solve different
tasks with different robots. Perhaps the most relevant work for this project
is the approach from Gupta et al. [31], who were able to transfer policies be-
tween two robots with different morphologies and actuator types by learning a
common feature space between the state observations of the two. Unlike exist-
ing research, the presented project aims to transfer policies between realistic,
high DoF manipulators, such as an anthropomorphic hand to a two-arm robot
equipped with parallel grippers.
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3.3 Learning from Demonstrations
Programming precise instructions for a robot to complete a task can be ex-
tremely tedious and in some cases even infeasible, therefore it would be valu-
able to be able to demonstrate how to accomplish a certain task directly, and
have the machine simply imitate the shown solution. Ekvall and Kragic [32]
present a planning approach that exploits human instructions to adapt the con-
strains of the problem and solve object manipulation tasks. Konidaris et al.
[33] introduces an algorithm to split demonstrations into different skill branches,
and then use the resulting "skill tree" to control a mobile manipulator from ex-
pert trajectories. More recently, Rozo, Jiménez, and Torras [34] proposed a
method that exploits human demonstrations with a robotic arm (via teleoper-
ation) combined with force perception to learn tasks such as pouring a liquid
into a glass. Other very exciting directions include the possibility of robot
learning from visual demonstrations; for example, Yang et al. [35] employ
two convolutional neural networks to extract task information from videos of
human demonstrators, and then control a dual-arm manipulator to reproduce
similar tasks.

More recent work focuses on policies represented by neural networks, and take
advantage of behavior cloning (BC) to imitate trajectories from a demonstrator
in a supervised manner. For example, Nair et al. [36] record human demon-
strations with Virtual Reality equipment, and then load these trajectories into
the replay buffer of an off-policy RL algorithm, considerably improving the
sample efficiency of a manipulator learning the pick and place task. Similarly,
Rajeswaran et al. [26] use a CyberGlove III to record precise joint angles of a
human hand as demonstrations, and then exploit BC to learn complex manipu-
lation tasks with a simulated anthropomorphic hand. For amuchmore detailed
overview, the survey from Argall et al. [37] provides an extensive summary on
robot learning from demonstration, although some of the referenced methods
are now outdated.
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Methods

4.1 Overview
In this work, we aim to transfer object manipulation skills between robots with
different morphologies, using a novel method we call Translated Behavior
Cloning. The overall procedure can be explained with three main points:

1. We start with two agents (agenta and agentb) that are able to success-
fully solve a task – called Proxy Task – in two different environments
(respectively enva and envb) controlling two different robots (a student
and a teacher). The agents can be either pre-trained, hand-engineered,
or human demonstrators.

2. We proceed by generating a dataset of twin trajectories with both agents
executing the proxy task, making sure that – at each episode – the goals
of the two agents are aligned, and the starting and ending states are
equivalent. We then use this dataset to learn a shared feature space with
the method described in [31].

3. Finally, we teach the second robot to perform a second task by having the
first robot demonstrate a successful policy, and by exploiting the learned
feature space to translate between the two.

Details on the second point will be given in Sec. 4.2, while the third point –
our main contribution – will be described in Sec. 4.3 later on.

To accomplish our goal, we start from the work of Gupta et al. [31], who
use an architecture consisting of two autoencoders to learn a shared feature

19
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space between states of two different robots. Once the feature space has been
obtained, they use it as a heuristic to guide the exploration when learning a
new task, introducing a new component into the reward signal. Although the
method seems promising, the authors only report results with robots that move
in a 2D world and have a very limited number of DoF (3 to 4). In addition,
the morphologies of the two robots used in the transfer only differ slightly,
for example by a single joint. Instead, our goal is to transfer manipulation
skills between complex robots that move in 3D space and have a large number
of DoF. Their morphologies differ considerably, going from one arm to two
arms, or from anthropomorphic fingers to parallel grippers, meaning that the
optimal strategies to solve the same task on two different robots may require
very different sequences of actions.

4.2 Learning a shared feature space

Encodera

Decodera

Za,t

Sa,t

S*
a,t

Encoderb

Decoderb

Zb,t

Sb,t

S*
b,t

Shared feature space

Figure 4.1: The two autoencoders trained to learn a shared feature space be-
tween states of two different robots. Note that the networks have two distinct
latent spaces, but we show them as connected because we encourage them to
be as similar as possible.

Given two controllers capable of solving a proxy task, we begin by collecting
a dataset of twin trajectories of the two robots. An important consideration
is that the initial and final states must be equivalent. The dataset is then fed
into two identical autoencoders (one for each robot) that learn to compress and
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reconstruct the input (see Figure 4.1). The two networks are trained together,
with a loss that encourages the latent spaces to be as similar as possible at each
step. In practice, the goal is to learn a shared feature space between states of the
two robots, so that at a later time we are able to tell how similar is the current
state of a robot to that of the other robot. Ideally, this method abstracts away
the details of the robots’ morphologies (that is, the number of joints, lengths,
physical space they occupy), but also the types of their actuators, and their
different dynamics, extracting a description that encodes the different stages
of the task regardless of who or which machine is performing it.

4.2.1 Training
Training is performed end-to-end with Stochastic Gradient Descent [38], in
particular, we use the Adam optimizer [39]. As in [31], both networks are
trained at the same time, with a MSE loss function that encourages both a
good reconstruction of the outputs with respect to the inputs,

La = ||Sa − S∗a||2 Lb = ||Sb − S∗b ||2 (4.1)

and a similarity loss [40] that forces the two latent spaces to be as alike as
possible for aligned input states:

Lsim = ||Za − Zb||2 (4.2)

The total loss fed to the optimizer is a weighted sum of the three:

Ltot = λa · La + λsim · Lsim + λb · Lb (4.3)

where λa, λb, and λsim are hyperparameters. These must be chosen carefully,
so that none of the loss contributions prevails over the others.

4.2.2 Alignment of the states
For the learned feature space to be meaningful, it is important that during
training the inputs to the two autoencoders are semantically equivalent, i.e.
the states should represent their respective robot at the same stage of the task
execution. We have already assumed that this is always true at initialization
and termination of each episode, but we can’t say the same for any of the in-
termediate steps a priori. In some cases, temporal alignment may be enough,
but if the robots execute the task with different strategies or at different paces,
the temporal alignment is lost. To solve this issue, Gupta et al. [31] employ
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the Dynamic Time Warping (DTW) algorithm [41] to periodically realign the
training dataset. DTW is a well-known algorithm to align two sequences, and
it does so based on a distance metric defined between each sample of a se-
quence and each of the other sequence. The complexity of the algorithm1

is quadratic with the length of the input sequences, therefore, in our imple-
mentation, DTW was written using Cython and parallelized to speed-up the
computation.

At the beginning of the training step, we initially treat the temporal alignment
of the episodes as good enough; we then train the networks, and exploit the
learned feature space as a metric function for DTW. We therefore re-align the
dataset, re-initialize the network parameters 2, and proceed by training the au-
toencoders again. This cyclic process is repeated until convergence. Regard-
ing this last point, it is important to note that there are no theoretical guarantees
about the convergence of this procedure, nor about its monotonicity in terms
of performance of the architecture. More on this topic will be discussed later
on in this report.

1There exist variants of Dynamic Time Warping that return approximate results and have
a lower time-complexity. It is unclear whether [31] used such variants, therefore we prefer to
use the exact algorithm.

2An alternative to this could be to train for less epochs at each cycle, and then continue to
use the same network parameters without re-initializing them. Again, it is not clear whether
[31] preferred this option.
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4.3 Learning a new task fromdemonstrations
As mentioned earlier, we use the two autoencoders described in Gupta et al.
[31] to learn a shared feature space between states of the two robots; we can
then exploit this representation to solve a new task on one of the robots. In
particular, we now have two tools to work with: 1) a metric that can tell us how
similar is the state of one robot to the state of the other, and 2) a system that can
generate reasonable trajectories on one robot starting from real trajectories of
the other. In order to perform the transfer and learn a new task on the second
robot, we can consider the following strategies:

• Add a new component to the reward function that encourages the policy
to imitate the teacher agent, as in [31]. The component can be annealed
during training, so that it’s dominant when the agent is still exploring.

• Design a simple controller that roughly follows the decoded trajecto-
ries, and then use Behavior Cloning to learn a policy directly from these
demonstrations.

• Use the same controller as above to pre-train a policy, and then fine-tune
it with on-policy methods.

Although [31] found that the first option works well for their experiments,
unfortunately, this strategy presents a number of flaws: 1) it requires hand-
tweaking of the weight of the additional reward component, which is poten-
tially very time-consuming, 2) it uses a single scalar value to guide complex
behavior, losing important information that could speed up the training, 3) it
forces the use of dense rewards, which may cause the training phase to get
stuck in a local minimum and the agent to stop learning.

The same reasoning can be applied to choose the appropriate algorithm to
learn a policy. For instance, PPO requires complex shaped rewards, and even
then, it doesn’t work well for complex robotics tasks with difficult exploration,
as we will see later on. The algorithm that instead works well for these tasks
is DDPG with HER, and it has been shown to work particularly well when
the rewards are sparse. Because of this, using DDPG with HER together with
Behavior Cloning seems the appropriate choice for our objective.

Connecting the pieces together, we obtain a powerful method that exploits the
translation capabilities of the learned shared feature space with the advantages
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of Behavior Cloning: we call this method Translated Behavior Cloning. Fig-
ure 4.2 illustrates a simplified overview of it.

Simple 
Controller

Encodera

Shared feature space

Decoderb

Replay Buffer

DDPG+HER 
learner

Figure 4.2: Overview of the Translated Behavior Cloningmethod. In this case,
the Fetch robot is acting as the teacher agent, while YuMi is being controlled
to imitate trajectories as the student agent. Note that the images here represent
the simulated environments, and do not imply that we are feeding frames to
the networks.

At each step of the task, we use the learned autoencoders to "cross-decode"
the state of the teacher robot into the desired state of the student robot. A sim-
ple controller then tries to achieve each desired state, controlling the student
robot in a simulated environment. The resulting trajectories are then stored
into the replay buffer of DDPG, which will sample transitions using the HER
algorithm and learn a successful policy.

The use of a hand-engineered controller at the output of the decoder may seem
limiting, but it is important to note that this component can be extremely sim-
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ple. In fact, the controller doesn’t even have to always succeed, because DDPG
with HER will manage to learn even from failed trajectories that the controller
might generate. Its role is merely to follow the observations decoded by the
network, so that the physical interactions with the environment are always re-
alistic and reflect the data out of theMuJoCo simulator. Without it, the learned
policy might fail to learn the dynamics of the environment (particularly those
related to the objects the robots interact with); in addition, we wouldn’t have
the information needed to approximate the optimal action given a state, since
the autoencoders do not deal with control signals, but only observations.

4.4 Choosing a Proxy Task
The initial assumption of the framework is that we already have two agents that
are able to accomplish the same task controlling two different robots. In prac-
tice, the agents could be represented by learned policies (obtained for example
with Reinforcement Learning methods), hand-engineered controllers based on
planning, or even human operators controlling a manipulator or performing
the task directly. In this work, we always use hand-engineered controllers to
perform the proxy task, due to the difficulty of learning controllers with RL
from scratch (as we empirically show in Sec. 6.1). We also assume that we
can reset both environments to the same initial conditions; for instance, if our
task involves a moving object, we assume that we can reset the object position
to the same point (with respect to the robot base) in both environments. These
assumptions may be too strict for some settings, but if the environments are
simulated, they are reasonable and usually easy to satisfy.

Choosing a proxy task may be a key aspect for the entire method to work, as
the quality of the learned shared feature space depends on it directly. The task
must involve at least as many observable environmental elements as our target
task(s), since if some are missing, the network wouldn’t be able to correctly
learn their importance for achieving the goal. Another key aspect that should
be considered is the variance and size of the generated dataset; the larger and
more diverse the dataset is, the better will be the generalization capacity of the
resulting trained models.
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Simulated Environments
and Tasks

In order to train and evaluate the agents, the open-source Gym package [42]
from OpenAI was used; the package provides a large set of environments with
a standard interface, and has been widely adopted by the RL research com-
munity. The robotic environments are simulated using the MuJoCo physics
engine [43], and include a Fetch manipulator, and a Shadow Dexterous Hand
attached to a fixture. An extension of OpenAI’s Gym was developed to cus-
tomize the existing environments and include new ones for a dual-arm manip-
ulator, specifically the YuMi IRB 14000 from ABB. A link to the repository
including the source code is reported in Chapter 1.

5.1 Fetch Environment
The Fetch environment [20] consists of a 7 DoF Fetch manipulator with a sim-
ple parallel gripper as end-effector, operating above a flat surface. The action
controls the position of the end-effector directly, together with the distance
between the fingers of the gripper; the orientation of the EE is instead fixed,
so that the fingers are perpendicular to the table at all times. Joint limits and
collisions are not explicitly discouraged within the reward function, although
the simulator treats them as soft constraints. The implementation is the one
included in [42]. Figure 5.1 includes frames of the Fetch environment at differ-
ent stages of the Pick and Place task. A detailed description of the observations
from this environment is reported in Table A.1.

26
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Figure 5.1: Two views of the same Fetch environment at different stages of the
Pick and Place task. The red dot here indicates the goal position.

5.2 Shadow Hand Environment
The Shadow Hand environment is a custom adaptation of the Hand environ-
ments included in [42]. The joints of the hand have the same properties and are
actuated in the sameway as in the original implementation, but the forearm has
been modified and is now free to move in the 3D space above a table, enabling
new tasks such as Pick and Place. For our purposes, we extended the action
space to include position control of the forearm, similar to the end-effector
control of the Fetch environment. As in the previous case, the orientation of
the forearm is fixed so that the palm of the hand is always facing downwards.
Figure 5.2 includes frames of the ShadowHand environment at different stages
of the Pick and Place task. A detailed description of the observations from this
environment is reported in Table A.2.
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Figure 5.2: The Shadow Hand environment at different stages of the Pick
and Place task. The goal position is represented by the semi-transparent cube
(lower-right corner of the table).

5.3 YuMi Environment
The YuMi environment was built starting from [44], and consists of a YuMi
IRB 14000 dual-arm manipulator (7 DoF for each arm) actuated with position
control of all joints. The end-effectors are equipped with parallel grippers, and
operate above a table similar to that used in the other two environments.

Figure 5.3: The YuMi environment at different stages of the Pick and Place
task. The goal position in this case is represented by the blue dot.

A more constrained variant of this environment was also developed to sim-
plify exploration. In this case, the positions of the end-effectors are controlled
directly, so that the agent has to output the position delta of the grasp center1 in
cartesian space, together with another value specifying the distance between
the two grippers (i.e. a total of 4 control signals). As we will see later on,

1By grasp center it is intended the average position of the end-effectors in cartesian space.
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this simplification makes a dramatic difference in the effectiveness of RL al-
gorithms. The assumption that we can control the position of the grippers
directly is fair, as there are several methods based on Inverse Kinematics that
allow us to do this quite easily, and even on real robots. A detailed description
of the observations from this environment is reported in Table A.3.

Factors such as self-collisions, singularities, and joint limits are taken into ac-
count by the simulator, although for simplicity, we don’t take any action to
actively avoid them during training; similarly, we don’t enforce any limit on
the joint velocities required to achieve the desired end-effector positions. In
theory, our proposed method is general enough to work regardless of the dy-
namics and constraints of the environment, therefore, we have no reason to
believe that taking into account such factors in future work would be particu-
larly challenging.

5.4 Tasks

5.4.1 Pick and Place
The Pick and Place task is one of the most commonly used in robotics research.
The goal is to reach for an object, grasp it, and then move it to a target loca-
tion. For our purposes, we ignore the object’s orientation, and only consider
its cartesian position to determine whether a state is successful or not. In addi-
tion, we set a 5cm threshold distance to the target, i.e. we say that an episode
is successful if the object comes within 5cm of the goal location. For each
episode, the object’s initial position is randomly sampled (excluding unreach-
able poses), and so is the target position. The objects used for this task were a
small cube and a sphere, with physical properties changing depending on the
experiment (details in a later section). Asymmetric objects as well as concave
geometries were briefly investigated, but unfortunately could not be used in
the final experiments due to technical challenges connected to the MuJoCo
simulator.

5.4.2 Push
The setup of the Push task is quite similar to that of the Pick and Place task.
At each episode, we begin with an object at a random location on a table,
and the agent’s goal is to push it to another random location without lifting
it. A successful state is determined in the same way as for the Pick and Place
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task, and with the same 5cm threshold. This task may seem simpler compared
to others, but the fact that the object has to constantly interact with the table
introduces new interesting dynamics. In particular, if pushed with enough
force, light objects or rolling objects like spheres or cylinders will continue to
move on the surface without the agent’s control, and may eventually fall on the
floor and become unreachable. For this task, a small cube and a sphere were
used as for the Pick and Place task.

5.4.3 Button
Tomake the Pick and Place taskmore interesting, a simple button can be added
to the scene. In this case, the object is unreachable until the button is pressed,
so that the agent needs to explore more and learn a multi-step behavior in order
to achieve the goal. The position of the button can be easily configured, but for
our purposes, we set it to the center of the table. Since the agent cannot directly
observe the pose of the button, this is kept fixed and it is not randomized, unlike
the initial position of the object in the other tasks. The button is implemented
in the Fetch environment, as well as the YuMi environment. Figure 5.4 shows
this task in action.

Figure 5.4: The Fetch robot at different stages of the Pick and Place with button
task. Once red area around the green object is pressed, the cube becomes
available and the task can be completed.

5.4.4 Rotating Platform
Finally, we can add another modifier to the Pick and Place task, increasing
the difficulty of the exploration phase even more: a rotating platform. In this
case, the robot is forced to interact with the platform, rotating it until the object
positioned at its far end becomes reachable; once the object is close enough to
the gripper, the task becomes the normal Pick and Place task.
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Figure 5.5: The Fetch robot at different stages of the Pick and Place with plat-
form task. In order to reach the object and achieve the task, the agent is forced
to first push the rotating platform until it rotates, bringing the cube closer to
the gripper.
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Experiments

In this chapter, we present two sets of experiments with different goals. We be-
gin by reporting the results on experiments with robotic agents learning object
manipulation skills from scratch. In this case, we use state-of-the-art Rein-
forcement Learning methods for continuous control, such as DDPG and PPO.
This first set of experiments serves to validate our implementations of the rele-
vant RL algorithms, as well as to motivate the need for more efficient methods.
In a second set of experiments, we validate our novel technique on several sim-
ulated environments. We report results on the effectiveness of the presented
method, as well as data on its sample efficiency when compared to learning
from scratch. Finally, we discuss the results and comment on the importance of
temporal alignment between two robots solving a task when collecting training
data.

6.1 Learning from Scratch

6.1.1 Learning manipulation on Fetch
As a first experiment, we start by considering the 7 DoF Fetch robotic arm and
the Pick and Place task on a simulated environment, as described previously
in Chapter 5. Following Plappert et al. [20] (who also designed and imple-
mented the Fetch environment), we use DDPG with the HER sampler. We use
the PyTorch implementation from [45] as a base and modify it1 for our needs,
while keeping the configuration details identical to those used in [20]. This
experiment will also serve as validation of the correctness of our implementa-
tion. We run the algorithm on 7 parallels threads for a total of 70 epochs, and

1https://github.com/carlo-/hindsight-experience-replay
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take advantage of a GPU to speed up training.
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Figure 6.1: Success rate (avg. over 300 episodes) of a DDPG-HER agent as it
learns the Pick and Place task from scratch on the Fetch environment. In this
case, a sparse reward signal was used.

For this particular task, our implementation of DDPG with HER consistently
yields policies that accomplish the goal with high success rate (above 90%)
without the need of any human priors (such as demonstrations or a shaped re-
ward signal), but it does so only after a large number of interactions with the
environment. This is in line with what has been found in previous work [20].

We can also compare these results with those obtained with PPO, another
powerful RL algorithm for continuous control. We use the implementation
from [46], which allows us to take advantage of message-passing for parallel
computing. Specifically, for this experiments we use 20 CPU cores to collect
experience and 7 GPU cards to optimize the neural networks, considerably
reducing the amount of time needed to train the agent.
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Figure 6.2: Success rate (avg. over 300 episodes) of a PPO agent while learn-
ing the Pick and Place task from scratch on the Fetch environment, in com-
parison with the performance of the DDPG-HER agent from the previous ex-
periment. Unlike the DDPG-HER policy, the PPO policy was trained using a
shaped reward signal.

In this case, when using the same sparse reward signal as for DDPG, the agent
is unable to learn anything. Following Popov et al. [25], we instead design a
"stepped" reward function that guides the exploration towards each sub-step
to the goal. Specifically, the agent receives some reward for reaching for the
object, then some more for grasping it, more once the object has been lifted,
and so on.

As illustrated in Figure 6.2, this second strategy results in better controller
capable of solving the task with a 30% success rate. In particular, the policy
is able to push the object to the target position, but when the goal is above
the table, the controller is incapable of lifting the object, and therefore fails
the task in the remaining 70% of cases. We can speculate that with additional
tweaking of the reward signal, PPOmight find a policy achieving success rates
similar to those obtained with DDPG, although the amount of effort required
to design such a function would start to look comparable to the engineering
needed to design the controller entirely by hand. Another important remark
concerns the sample efficiency of the algorithms. The results show how the
PPO policy only makes some progress after over 10M interactions with the
environment, as opposed to DDPG-HER, which solves the task after collecting
1.5M observations.
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6.1.2 Learning manipulation on Shadow Hand
Similar experiments were conducted with the ShadowHand environment. De-
spite the task being identical, this environment is muchmore challenging com-
pared to Fetch, since the learned policy must output separate control signals
for each of the fingers’ joints, and even a small movement of one of the fingers
can cause the hand to drop the object. Once the box falls, there isn’t much time
for the agent to go back and try again before the episode ends; additionally, the
object may become unreachable altogether until the next reset if it falls off the
table.

We begin by using DDPG with HER as before. In this case, most of the initial
attempts to learn the pick and place task failed, often revealing a need to tweak
some parameters of the MuJoCo simulator. Some more successful policies
learned to drag the object around the table, but never lifted it when the target
position was above the surface.
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Figure 6.3: Success rate (avg. over 300 episodes) of theDDPG-HER agent as it
learns the Pick and Place task from scratch on the Shadow Hand environment.
In this case, a sparse reward signal was used.

Several tricks were needed to consistently learn policies that solve the task
fully. For instance, inspired by [25], we initialize 20% of the episodes with the
object already grasped, so that the agent only has to move the forearm to the
goal to receive some reward. In addition, we increased the simulated friction
between the fingers and the object to reduce the chance of dropping it. Thanks
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to these changes, theDDPG agent was able to achieve success rates above 70%,
as shown in Figure 6.3, although only after observing over 10M interactions
with the environment. Similarly to what we found in the previous experiment,
PPO with a shaped reward signal fails to learn much, with a success rate that
remains close to zero even after 100M interactions with the environment.

6.1.3 Learning manipulation on YuMi
Lastly, we experiment with the pick and place task in the YuMi environment.
In this case, the robot has less joints compared to the Shadow Hand, but the
fact that the two end-effectors can move independently and that they are both
required to accomplish the task makes this environment even more challeng-
ing. Unsurprisingly, both DDPG with HER and PPO fail to learn anything,
even after a large number of environment interactions, as the probability of
randomly actuate all joints, pick the object, and bring it to a specific target
position is practically zero.

In order to simplify the environment and learn robust controllers for the pick
and place task with YuMi, we can introduce motion constraints to the manip-
ulator, and therefore compress the action space down to 4 dimensions, con-
sidering the two end-effectors as a single parallel gripper; 3 values control the
position of the gripper in Cartesian space (i.e. the center position between the
two end-effectors), and one controls the distance between its "fingers" (i.e. the
distance between the actual grippers); see also Section 5.3.
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Figure 6.4: Success rate (avg. over 300 episodes) of the DDPG-HER agent
as it learns the Pick and Place task from scratch on the YuMi (constrained)
environment. In this case too, a sparse reward signal was used.

In this case as well, PPO fails to solve the task, even with carefully shaped
reward signals. Instead, Figure 6.4 shows the success rate of a DDPG-HER
policy. The learning curve is almost monotonic, and the agent consistently
solves the task with a success rate above 90% after observing around 3M en-
vironment interactions.

6.1.4 Discussion
As we have seen from these initial experiments, the results suggest that learn-
ing a manipulation task on a robot is not possible unless we introduce human
priors and/or allow a large number of environment interactions. This moti-
vates the need for methods that reuse past knowledge, or transfer knowledge
between agents, so that the number of tasks that must be learned from scratch
is reduced. This is especially important if we wish to learn such manipulation
skills on real robots: in the real world, objects cannot be moved to an arbitrary
position in space with infinite precision, and manipulators cannot be left unsu-
pervised to perform millions of random interactions with their environment.
The need for knowledge transfer and reuse is clear.
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6.2 Transfer from Shadow Hand to YuMi
We will now present the main experiments performed using our proposed
method for skill transfer. We begin by considering the transfer of the object
manipulation skill from a Shadow Hand robot to a YuMi manipulator. This is
a particularly interesting set-up, as the Shadow Hand is an anthropomorphic
robot and can be mapped directly to a human hand, meaning that we could
substitute it with a human demonstrator.

6.2.1 Environments and Tasks
In this case, the proxy task was Pick and Place, while the target was Push. For
both environments, the object used was a small box, with a side length of 5cm,
and a mass of 200g. The initial position of the object was randomly sampled
at the beginning of each episode, taking into account the space of reachable
end-effector positions for both robots, YuMi in particular. The goal position
was randomly sampled with the same criterion, so that the policy is able to
generalize well. We used the constrained variant of the YuMi environment as
for the previous experiments. The length of each episode was 50 steps for the
YuMi environment and 200 steps for the Shadow Hand environment.

6.2.2 Setup
In order to accomplish the proxy task, both robots were controlled by simple
hand-engineered agents, although learned controllers could be used as well.
The autoencoders were trained with the Adam optimizer [39], using a learning
rate of 1e− 4 and batch size 128. The size of the latent space was 15, and the
encoders and decoders were built using 3 fully connected layers (60 hidden
units) and ReLU activation. The factors of the different contributions of the
autoencoder’s loss function were set in proportion to the dimensions of the
inputs (for instance, if n is the number of input dimensions of the autoencoder
a, we set λa = 1

n
); the factor for the similarity loss (λsim) was instead fixed to 2.

The networks were trained for 14 cycles, each consisting of 80 epochs. After
each cycle, the episodes were re-aligned using DTW and the learned similarity
loss as metric, and all parameters of the networks were re-initialized. The
shared feature space was then used to translate trajectories of a target task –
Push box – and train a DDPG-HER agent using Behavior Cloning.
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6.2.3 Results
A total of 5000 twin episodes of the proxy task where generated, each with
the same initial states and goals for both environments. This dataset was then
split into training and validation sets (the latter being 20% of the total amount
of data) and then used to train the autoencoders. The results of this run are
shown in Figure B.1.

In order to assess the quality of the shared feature space obtained at each cycle,
we use the success rate of a simple controller as a metric. The controller fol-
lows cross-decoded trajectories as explained in Chapter 4, and tries to solve the
proxy task for 300 episodes (Figure 6.5). Interestingly, we observe that train-
ing the autoencoders for several cycles does not seem to improve the quality
of the translated trajectories over time.
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Figure 6.5: Success rate of a controller imitating YuMi trajectories decoded
from the autoencoders, starting from real ShadowHand trajectories. The tasks
used for the evaluation were Push as well as Pick & Place (same as the proxy
task), and the success rate was computed after each cycle by considering 300
episodes each time.

Additionally, we see that demonstrations of the Push task are properly trans-
lated and lead to a success rate of 30%with zero-shot transfer (i.e. without the
need of any fine-tuning), while the Pick and Place task (the same used as proxy
task to train the autoencoders) is not immediately transferred. This could be
due to at least two reasons: 1) The Pick and Place task is challenging, while
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the controller used to follow the translated trajectories is extremely simple; a
single mistake during an episode will cause the object to fall without the pos-
sibility of recovery. 2) The Shadow Hand agent solves the Pick and Place task
quite slowly (taking up to 200 steps), while the YuMi agent can be much faster
(up to 50 steps), meaning that it is quite difficult to align trajectories of the two
robots; differently, the Push task can be accomplished by both in a comparable
number of steps.

Having assessed the performance of the shared feature space, we picked the
best parameters of the autoencoders according to this metric, specifically those
from the 3rd cycle of training. We then used the networks to translate success-
ful episodes from ShadowHand to YuMi on the target task. Finally, we trained
DDPG with HER on the target task with YuMi, exploiting the generated tra-
jectories with Behavior Cloning. The results of the final performance of this
setup are shown in Figure 6.6, together with the success rate of a policy learned
from scratch for reference.
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Figure 6.6: Push box task as target. Success rate (avg. over 300 episodes)
during training from teacher vs learning from scratch.

In this case, we observe that the policy learning from translated demonstra-
tions from Shadow Hand has initially an advantage over the agent learning
from scratch, but after 500k environment steps the second agent takes over
and learns a more robust policy.
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6.3 Transfer from Fetch to YuMi
This final set of experiments attempts the transfer of object manipulation skills
from a Fetch robot to a YuMi manipulator. From a certain perspective, this
second setup may seem to correspond to a more relaxed problem compared
to the previous one, since the mapping between a single arm and two arms
with parallel grippers is simpler. On the other hand, having two end-effectors
to work with enables a large set of possible interactions with an object that
would not be possible with a single gripper; for this reason, the mapping in
task space between these two different morphologies may actually be rather
complex.

6.3.1 Environments and Tasks
The YuMi environment is the same as the one considered in the previous sec-
tion, while the Fetch environment is the original implementation from [42],
with the exception of the object being manipulated. The proxy task was Pick
and Place of a box (side of 5cm, mass of 2Kg, as in the original Fetch envi-
ronment), while several target tasks were explored (Table 6.1). Details of each
task are given in Chapter 5.

Task Object type Size Steps

Push Box 5cm (side) 50
Push Sphere 5cm (diameter) 50

Pick & Place with platform Box 5cm (side) 80
Pick & Place with button Box 5cm (side) 50

Table 6.1: Target tasks explored in the experiments in this section.

6.3.2 Setup
In order to accomplish the proxy task, as in the previous case, both robots were
controlled by hand-engineered agents, although learned controllers could be
used as well. The autoencoders were trained with the Adam optimizer with
learning rate 1 · 10−4 and batch size 128. The size of the latent space was 15,
and the encoders and decoders were built using 3 fully connected layers (60
hidden units) andReLU activation. The factors of the different contributions of
the autoencoder’s loss function were set as in the previous set of experiments.
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6.3.3 Results
As a first step, a total of 5000 twin episodes where generated, each with the
same initial states and goals for both environments. This dataset was split into
training and validation sets (the latter being 20% of the total amount of data)
and was then used to train the autoencoders, with the goal of learning a shared
latent space between states of the two robots. The results of this first phase
can be seen in Figures B.2 and B.3. Similarly to what we saw earlier on, we
see that the quality of reconstructed trajectories doesn’t improve at each cycle,
and even peaks at the end of the first, i.e. before we run the DTW algorithm
for the very first time. We also observe that the success rate does not seem
to converge to a fixed value, which is in contrast with what Gupta et al. [31]
found in their work.

As before, we picked the best pair of autoencoders based on the zero-shot trans-
fer performance, and proceeded by training a DDPG-HER agent with demon-
strations translated from the teacher robot. As shown in Figures 6.7, 6.8, and
6.9, with our method we were able to successfully transfer manipulation skills
from Fetch – a single armmanipulator – to YuMi – a dual arm robot – for most
tasks. More specifically, all tasks were transferred with a success rate above
90%, with the exception of the Pick & Place task with the rotating platform.
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Figure 6.7: Push box task as target. Success rate (avg. over 300 episodes)
during training from teacher vs learning from scratch.
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Figure 6.8: Push sphere task as target. Success rate (avg. over 300 episodes)
during training from teacher vs learning from scratch.
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Figure 6.9: Pick & Place with button task as target. Success rate (avg. over
300 episodes) during training from teacher vs learning from scratch.

For the Pick & Place with platform task instead, the controller was unable to
generate reasonable trajectories to insert into the replay buffer of DDPG, there-
fore we cannot report any data regarding this experiment. This is probably due
to the fact that this particular task is too different from the proxy task, and re-
quires the agent to execute trajectories in a subset of the cartesian space that
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rarely appears in the training dataset. Other issues are related to the difficulty
of the task itself. For instance, the object is initially positioned at the far end of
the platform and there is a high chance that it will fall off during exploration,
remaining unreachable until the next reset.

In general, by observing the plots in this section, we can immediately rec-
ognize a trend: learning from both Fetch and Shadow Hand is possible, but
seems to require more interactions with the environment compared to learning
from scratch. This could be due to the fact that policies trained with Behavior
Cloning know very well how to act in the space of states that are relevant for
completing the task, but output noise when stepping outside this area. Differ-
ently, policies trained from scratch begin by heavily exploring the state space
almost uniformly, and therefore they may quickly become more robust, speed-
ing up the learning process. This is also supported by the fact that TBC policies
seem to learn faster at the beginning of each run, but then slow down later on
because of the initial bias imposed by the translated demonstrations.

6.4 Positive Impact of Transfer
on Exploration

Other interesting results suggest that TBC may be quite useful when the task
we are trying to learn requires a lot of exploration. Figures 6.10 and 6.11 show
how the agent is immediately encouraged to reach for the object when training
with TBC. Instead, the agent that learns from scratch is forced to first explore
randomly, and then eventually catches up when stumbling upon the object. We
can speculate that if the object weren’t so easily accessible, the random policy
would have had a hard time making progress. Environments such as the one
with the rotating platform could be used to verify this aspect. We also observe
that the agents trained with TBC solve the Push tasks by getting much closer to
the objects. This is because the proxy task – Pick & Place – requires the agent
to surround the object with the gripper(s) before grasping it, hence getting as
close as possible to its center, and this behavior is being transferred to the Push
task. Differently, the agent trained from scratch has learned to push with any
part of the end-effectors, including the external parts of the grippers.
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Figure 6.10: Minimum distance object-gripper over initial, averaged from dif-
ferent test episodes during training, with Push box as target task. The gray
area is a rough estimate of the region where the agent isn’t interacting with
the object, while the red vertical line represent the number of steps needed to
learn the task from scratch with > 80% success rate. For the same plot with
the full x-axis, see Figure B.4.
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Figure 6.11: Same visualization as Fig. 6.10, but with Push sphere as the
target task. For the same plot with the full x-axis, see Fig. B.5.



Chapter 7

Conclusion

In this work, we have presented a new set of simulated environments to de-
velop and test techniques for transferring object manipulation skills between
robots with different morphologies. The environments provide a framework
to learn and transfer tasks such as Pick & Place and Push, as well as multi-step
tasks involving rotating platforms and buttons. They are built using the stan-
dard APIs from OpenAI’s Gym package, they are open-source and available
on GitHub.

We have introduced a novel technique, called Translated Behavior Cloning,
that aims to solve the skill transfer problem by first leveraging an existing
method to learn a shared feature space between states of the two robots, and by
then exploiting this representation to transfer skills with model-free Reinforce-
ment Learning techniques. The framework requires little hand-engineering,
and it is designed to work with DDPG with HER, although it could be adapted
to to work with other off-policy algorithms, such as SAC.

We saw positive results in the transfer from a manipulator with a single end-
effector to a dual-arm robot, as well as encouraging results in the transfer start-
ing from an anthropomorphic hand, despite the considerable differences in
terms of morphology and actuation. Interestingly, the results highlighted the
fact that the cyclic use of the Dynamic Time Warping algorithm employed by
[31] doesn’t seem to particularly help the learning process of the shared fea-
ture space. The details of their implementation are not fully specified in the
publication, therefore it is possible that this discrepancy may simply be due to
different hyperparameters.

46



CHAPTER 7. CONCLUSION 47

We also saw that TBC is unfortunately not as sample efficient as desired, and
therefore cannot be applied to physical machines with reasonable amounts of
resources. Although this aspect highlights a recurrent issue of Reinforcement
Learning applied to robotics, we aim to address it in future research projects.

Finally, we reported very encouraging results highlighting the impact of TBC
on exploration. Policies trained from translated demonstrations seem to be
immediately aiming for the goal without any fine-tuning, while agents learn-
ing from scratch spend hundreds of thousands of steps in subsets of the state-
space that are not relevant for the task. This characteristic of TBC policies
could potentially make a difference between solving a task that requires hard
exploration and not solving it at all, although it is not obvious how to design
environments to properly test this hypothesis.

7.1 Future Work
Further research could focus on experimenting with different tasks, such as
rearranging multiple objects, as well as different manipulators. The algorithm
we presented could be modified so that the dominance of the behavior cloning
loss is annealed during training; in this way, wemay be able to guide the explo-
ration without biasing the policy too much. The structure to learn the shared
feature space could be substituted with architectures similar to those used for
text translation (such as Recurrent Neural Networks), so that past states are
taken into account; such a technique may also be less sensible to the align-
ment of the trajectories of the two robots. Future work should also investigate
the importance of the choice of the proxy task, and how multiple tasks could
be combined to transfer even more complex skills. Another important aspect
to consider is the sample efficiency of the learning algorithms used; since the
goal is ultimately to exploit these techniques with real robots, the number of
interactions with the environment needed should be reduced as much as pos-
sible.



Bibliography

[1] Richard S Sutton and Andrew G Barto. Reinforcement learning: An in-
troduction. MIT press, 2018.

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[3] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using
connectionist systems. Vol. 37. 1994.

[4] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine
learning 8.3-4 (1992), pp. 279–292.

[5] Javier García and Fernando Fernández. “A comprehensive survey on
safe reinforcement learning”. In: Journal ofMachine Learning Research
16.1 (2015), pp. 1437–1480.

[6] Martín Abadi et al. TensorFlow: Large-ScaleMachine Learning onHet-
erogeneous Systems. 2015. url: https://www.tensorflow.
org/.

[7] Adam Paszke et al. Automatic differentiation in PyTorch. 2017. url:
https://pytorch.org/.

[8] Diederik PKingma andMaxWelling. “Auto-encoding variational bayes”.
In: arXiv preprint arXiv:1312.6114 (2013).

[9] HuaiboHuang et al. “IntroVAE: IntrospectiveVariational Autoencoders
for Photographic Image Synthesis”. In: NeurIPS. 2018.

[10] Samuel R. Bowman et al. “Generating Sentences from a Continuous
Space”. In: CoNLL. 2016.

[11] Prafulla Dhariwal et al.OpenAI Baselines.https://github.com/
openai/baselines. 2017.

[12] Eric Liang et al. “RLlib: Abstractions for Distributed Reinforcement
Learning”. In: ICML. 2018.

48

http://www.deeplearningbook.org
https://www.tensorflow.org/
https://www.tensorflow.org/
https://pytorch.org/
https://github.com/openai/baselines
https://github.com/openai/baselines


BIBLIOGRAPHY 49

[13] JoshAchiam. SpinningUp inDeep RL. 2019. url:https://spinningup.
openai.com (visited on 06/01/2019).

[14] John Schulman et al. “Proximal Policy Optimization Algorithms”. In:
CoRR abs/1707.06347 (2017).

[15] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement
learning”. In: CoRR abs/1509.02971 (2015).

[16] Boris T Polyak and Anatoli B Juditsky. “Acceleration of stochastic ap-
proximation by averaging”. In: SIAM Journal on Control and Optimiza-
tion 30.4 (1992), pp. 838–855.

[17] Marcin Andrychowicz et al. “Hindsight Experience Replay”. In: NIPS.
2017.

[18] Volodymyr Mnih et al. “Human-level control through deep reinforce-
ment learning”. In: Nature 518.7540 (2015), p. 529.

[19] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor”. In: arXiv preprint
arXiv:1801.01290 (2018).

[20] Matthias Plappert et al. “Multi-Goal Reinforcement Learning: Chal-
lenging Robotics Environments and Request for Research”. In: CoRR
abs/1802.09464 (2018).

[21] Ricson Cheng, Arpit Agarwal, and Katerina Fragkiadaki. “Reinforce-
ment Learning of Active Vision for Manipulating Objects under Occlu-
sions”. In: CoRL. 2018.

[22] DavidWarde-Farley et al. “UnsupervisedControl ThroughNon-Parametric
Discriminative Rewards”. In: CoRR abs/1811.11359 (2019).

[23] Sergey Levine, Nolan Wagener, and Pieter Abbeel. “Learning contact-
rich manipulation skills with guided policy search”. In: 2015 IEEE in-
ternational conference on robotics and automation (ICRA). IEEE. 2015,
pp. 156–163.

[24] Shixiang Gu et al. “Deep reinforcement learning for robotic manip-
ulation with asynchronous off-policy updates”. In: 2017 IEEE inter-
national conference on robotics and automation (ICRA). IEEE. 2017,
pp. 3389–3396.

[25] Ivaylo Popov et al. “Data-efficient Deep Reinforcement Learning for
Dexterous Manipulation”. In: CoRR abs/1704.03073 (2018).

https://spinningup.openai.com
https://spinningup.openai.com


50 BIBLIOGRAPHY

[26] Aravind Rajeswaran et al. “Learning Complex Dexterous Manipulation
with Deep Reinforcement Learning and Demonstrations”. In: CoRR
abs/1709.10087 (2018).

[27] OpenAI et al. “Learning Dexterous In-Hand Manipulation”. In: CoRR
abs/1808.00177 (2018).

[28] Sergey Levine et al. “Learning hand-eye coordination for robotic grasp-
ing with deep learning and large-scale data collection”. In: The Inter-
national Journal of Robotics Research 37.4-5 (2018), pp. 421–436.

[29] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-AgnosticMeta-
Learning for Fast Adaptation of Deep Networks”. In: ICML. 2017.

[30] ColineDevin et al. “Learningmodular neural network policies formulti-
task and multi-robot transfer”. In: 2017 IEEE International Conference
on Robotics and Automation (ICRA) (2017), pp. 2169–2176.

[31] Abhishek Gupta et al. “Learning Invariant Feature Spaces to Transfer
Skills with Reinforcement Learning”. In:CoRR abs/1703.02949 (2017).

[32] Staffan Ekvall and Danica Kragic. “Robot learning from demonstration:
a task-level planning approach”. In: International Journal of Advanced
Robotic Systems 5.3 (2008), p. 33.

[33] George Konidaris et al. “Robot learning from demonstration by con-
structing skill trees”. In: The International Journal of Robotics Research
31.3 (2012), pp. 360–375.

[34] Leonel Rozo, Pablo Jiménez, and Carme Torras. “A robot learning from
demonstration framework to perform force-based manipulation tasks”.
In: Intelligent service robotics 6.1 (2013), pp. 33–51.

[35] YezhouYang et al. “Robot learningmanipulation action plans by"Watch-
ing" unconstrained videos from the world wide web”. In: Twenty-Ninth
AAAI Conference on Artificial Intelligence. 2015.

[36] Ashvin Nair et al. “Overcoming Exploration in Reinforcement Learn-
ing with Demonstrations”. In: 2018 IEEE International Conference on
Robotics and Automation (ICRA) (2018), pp. 6292–6299.

[37] Brenna Argall et al. “A survey of robot learning from demonstration”.
In: Robotics and Autonomous Systems 57 (2009), pp. 469–483.

[38] Herbert Robbins and SuttonMonro. “A stochastic approximationmethod”.
In: The annals of mathematical statistics (1951), pp. 400–407.



BIBLIOGRAPHY 51

[39] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization”. In: CoRR abs/1412.6980 (2015).

[40] Sumit Chopra, Raia Hadsell, and Yann LeCun. “Learning a Similar-
ity Metric Discriminatively, with Application to Face Verification”. In:
Proceedings of the 2005 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition - Volume 1. 2005, pp. 539–546.

[41] MeinardMüller. “Dynamic time warping”. In: Information retrieval for
music and motion (2007), pp. 69–84.

[42] Greg Brockman et al. OpenAI Gym. 2016. eprint: arXiv : 1606 .
01540.

[43] Emanuel Todorov, TomErez, and Yuval Tassa. “MuJoCo: A physics en-
gine for model-based control”. In: 2012 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (2012), pp. 5026–5033.

[44] IsacArnekvist.OpenAI gym - extendedwith YuMi environment.https:
//github.com/isacarnekvist/open-ai-yumi. 2018.

[45] Tianhong Dai. PyTorch implementation of Hindsight Experience Re-
play. https://github.com/TianhongDai/hindsight-
experience-replay. 2019.

[46] Ashley Hill et al. Stable Baselines. https://github.com/hill-
a/stable-baselines. 2018.

arXiv:1606.01540
arXiv:1606.01540
https://github.com/isacarnekvist/open-ai-yumi
https://github.com/isacarnekvist/open-ai-yumi
https://github.com/TianhongDai/hindsight-experience-replay
https://github.com/TianhongDai/hindsight-experience-replay
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines


Appendix A

Details of the Environments

Input Dimensionality

gripper position 3D
gripper velocity 3D
object position 3D

object relative position 3D
finger positions 2D
finger velocities 2D
object orientation 3D
object velocity 3D

object angular velocity 3D
achieved goal 3D
desired goal 3D

Table A.1: Observations used as input to the policy for the Fetch environ-
ment. For DDPG-HER policies, the goals were kept separate and used only
by the HER sampler; instead, for PPO the desired goal was appended to the
observation vector.
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Input Dimensionality

forearm position 3D
forearm orientation 3D
forearm velocity 3D
palm position 3D
object position 3D

object orientation 3D
object velocity 3D

object relative position 3D
hand joint angles 24D

hand joint velocities 24D
achieved goal 7D
desired goal 7D

Table A.2: Observations used as input to the policy for the Shadow Hand
environment. Goals are handled as explained in Table A.1.

Input Dimensionality

grasp center position 3D
grasp center velocity 3D
position of grippers 6D
velocity of grippers 6D
object position 3D

object orientation 3D
object relative position 3D

object velocity 3D
achieved goal 3D
desired goal 3D

Table A.3: Observations used as input to the policy for the YuMi constrained
environment. Goals are handled as explained in Table A.1.



Appendix B

Additional Results
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Figure B.1: Loss (averaged) when training the two autoencoders on the Pick
& Place task with Shadow Hand and YuMi. After each cycle, the networks are
re-trained from scratch, which explains the spiking pattern.
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Figure B.2: Loss (averaged) when training the two autoencoders on the Pick &
Place task with Fetch and YuMi. After each cycle, the networks are re-trained
from scratch, which explains the spiking pattern.
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Figure B.3: Success rate of a controller imitating YuMi trajectories decoded
from the autoencoders, starting from real Fetch trajectories. The task used for
the evaluation was Push, and the success rate was computed after each cycle
by considering 300 episodes each time.
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Figure B.4: Full version of Fig. 6.10.
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Figure B.5: Full version of Fig. 6.11.
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